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Using Kraichnan's model the specific properties of localization of an inertial and floating impurity in a turbulent medium are 
studied for various relations between the divergent and vortical part of the velocity field of impurity particles. © 2004 Elsevier 
Ltd. All rights reserved. 

In recent years the properties of intermittency and stochastic localization of impurity in randomly moving 
media have been intensively studied both theoretically and experimentally (see, for example, [1-6]). It 
has already been established (see, for example, [1, 5]) that the principal mechanism of localization is 
related to the presence of a divergent component of the velocity field of the medium, which arises when 
there is inertial motion of the particles [7]. Correspondingly, it is assumed below that the impurity velocity 
field possesses both a vortical and divergent component; the field itself is described by Kraichnan's model 
[8] with a specified correlation tensor. 

An analysis of the properties of impurity localization needs appropriate methods of statistical 
description. One such method, which is based on an analysis of the mean density around an arbitrarily 
chosen particle (henceforth we shall call this the tagged particle) and the conditional distribution of 
relative diffusion of particles, is proposed below. On the basis of the proposed analysis it becomes possible 
to calculate the means mass and specific sizes of clusters and to trace how the form of the clusters changes 
depending on the ratio of the divergent and vortical components of the particle velocities. 

1. T H E  M E A N  D E N S I T Y  A R O U N D  T H E  T A G G E D  P A R T I C L E  

The most effective method of providing a statistical description of the intermittency and stochastic 
localization of an impurity in a turbulent medium is to investigate the Lagrangian statistical characteristics 
of the impurity (see, for example, [9-12]). The mean density around the tagged particle, which will be 
be introduced below, is one of a variety of Lagrangian characteristics of the impurity. 

Consider the density of an impurity particle of unit mass 

n(z ,  t; ~, s) = 8 ( X ( ~  + s, t) - X(~ ,  t) - z) (1.1) 

Here X(~, t) are the actual coordinates of the tagged particle, s are the coordinates of the remaining 
particles in a Lagrangian system of coordinates with centre at the point ~ where the tagged particle is 
located, and z are the Eulerian coordinates, measured from the tagged particle situated at the point 
X(~, t) at the current instant t. In this paper we take the particle coordinates at the initial instant 
t = 0 as the Lagrangian coordinates. In particular 

x(g,o) = g, x(g+s,O) = g+s 

Suppose the initial density around the tagged particle n0(s) is known. Then, from relation (1.1) we 
have the following mean density around the tagged particle 

(nc(Z, t; {))  = f g ( z ;  {, s, t )no(s )ds  (1.2) 
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This relation involves the distribution of the vector joining two particles 

g(z ;~ ,s , t )  = ( ~ ( X ( ~ + s , t ) - X ( ~ , t ) - z ) ) ,  g ( z ; ~ , s , t = 0 )  = 8 ( s - z )  

If the random field of the impurity velocity v(x, t) is statistically uniform, the dependence on ~ in 
equality (1.2) vanishes and this equality takes the form 

(nc(Z, t)) = Ig(z; s, t)no(s)ds (1.3) 

Suppose the equation for the distribution of the relative diffusion g(z, s, t) is known 

~gl~t = ~£g, g(z;  s, t = 0) = ~5 (z - s )  (1.4) 

where ~ is some operator in the space z. Then the mean density around the tagged particle conforms 
to Cauchy's problem 

O(nc)/Ot = ~(nc), (no(z, t = 0)) = no(Z ) (1.5) 

The mean density around the tagged particle enables one to judge the masses and characteristic sizes 
of the cluster. We shall show this using the example of the steady density of the duster around the tagged 
particle 

nst(z ) = lira (no(z, t)) (1.6) 
t ----) ~ 

If the mean impurity density is uniform, (n(x, t)) = no, the above-mentioned steady density around the 
tagged particle conforms to the boundary-value problem 

~nst(Z) = 0, nst(z)llzt_~,~ = n 0 (1.7) 

The condition at infinity takes into account the fact that the remaining dusters make up a "background" 
with a mean density no. An excess of the cluster density over the mean density is specified by the function 

~ ( z )  = ns,(Z)- no 

We will define the mean mass of the cluster by the function 

M = I~ ; (z )dz  (1.8) 

The function ~3(z), which specifies the particle distribution around the centre of the cluster, will be called 
the mean profile of the cluster. The mean profile is not identical with U~(z), since the tagged particle 
may be located at any point of the cluster. This fact is expressed by the equality 

~(z)  = (N(z-zmg)) (1.9) 

where Ztag is the coordinate of tagged particle in the system of coordinates with origin at the cluster 
centre. It is natural to take a distribution of coordinates of the tagged particle, over which the averaging 
is carried out in equality (1.9), in the form 

g(z) = ~(z)/M 

Expanding the mean in (1.9) using this distribution, we arrive at an integral equation in the mean 
profile of the cluster 

~ ( z )  ® ~3(z) = M~;(z )  

In the case of an isotropic medium let us find a steady solution of Eq. (1.5) using Kraichnan's model 
[10]. We recall that in Kraichnan's model it is assumed that the velocity field of the turbulent medium 
is 8-correlated in time, and the correlation tensor of the velocity field v(x, t) of the medium is assumed 
to be specified by the relation 

(ui(x, t)vj(x + z, t + x)) = ~/j(z)fi(x) 
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This formulae includes the diffusivity tensor of the field of particle velocities 

2 

~ i j ( Z )  = _ 8ijAAe(z ) + -, a~ [ A e ( Z )  - Ap(z)] 
OZiOZ j 

expressed in terms of scalar fields responsible for the divergent part of the velocity (Ap) and its vortical 
part (Ae). 

Within the framework of Kraichnan's model Eq. (1.5) takes the form (see, for example, [12]) 

a(n¢) 3 2 
= 2i tA(n) + 2a--7-~[Bij(z)(n)], Biflz) = ~ij(0) - ~;j(z) a7 ,,,.iv,.j 

(1.1o) 

In addition to the turbulent fluctuations of the velocity field of the medium, this equation takes into 
account the molecular diffusion of particles with molecular diffusivity It, which plays a principal role 
when analysing the evolution of the impurity density (see, for example, the monograph [13], where the 
role of molecular diffusion when describing impurity density fluctuations is discussed in detail). 

For a radially symmetric distribution g = g(z, t), Eq. (1.10) becomes 

a(nc} 2 a a-lF a .. Q(nc}] (1.11) at = z- - gzz z [gz t 'It + Pll + e l t )<n) l  + 

Here 

rl dAe(Z) + De] PII(Z) = d 2Ap(z! +~bp, Ell(Z ) = ( d -  1)[z 
dz z 

d fldAp(Z)~ dell(Z) 
a(z)  = (d-1)-d-z[z "~z ) dz 

(1.12) 

d is the dimensionality of the space, and the following asymptotic expansion is used 

2 

A e p(z) = A e p(O)--2~e,p+ Z 4 , , " ~  Be, p - - . .  (Z -") 0) (1.13) 

which specifies a nature of the coefficients 6"~e, p in relations (1.12). It is also assumed that the functions 
Ae,p(z ) satisfy the condition of attenuation of the correlations with distance and tend to zero quite rapidly 
as z ---) oo, which ensures convergence of the integrals which arise below. 

The steady density nst(Z ) (1.6) is subject to the boundary-value problem (1.7) 

[(It +PII +Ell)nst] + Qnst = 0, nst(0 ) = 0, nst(o~) = n o 

and has the following solution 

dP(y) 
nst(Z) = n°exp It +PII(Y) + Ell(Y) (1.14) 

Here 

1 d (  a-ldAe(z)h 
P(z) = AAp(z )+d~p  = zd- l-~zz[Z dz ) + d ~ p  (1.15) 

We will discuss the physical meaning of the functions in expression (1.14) by splitting the field of the 
particle velocities into divergent and vortical parts 

e V(X, t) = VP(X, t) + V (X, t) 
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Suppose the parallel correlation functions of the velocities are known 

e, 17 nil (Z, 0) ----- ( ( O e ' P ( x ,  t)" I)(ue'P(X + Z, t + 0) '  !)), 

They specify coefficients of turbulent diffusion 

D~(z) = 2SB~(z, O)dO, 
0 

1 = z l z  

D~(z) = 2fBl~(z, 0)d0 
0 

The corresponding coefficients of relative diffusion occur in the denominator of the integral in equality 
(1.14): 

PII(Z) = ~p-D~(z),  Ell(Z ) = (d-  1)~e-Dt~(Z ) 

The function P(z) in the numerator of this integral has a similar meaning. We will show this by a 
determining the mean of the scalar product 

BP(Z, "~) = (vP(x, t)- VP(x + z, t + Z)) 

The corresponding coefficient of relative diffusion is 

P(z) = d~p-Dt'(z) ,  De(z) = 2IBP(z,'t)dx 
0 

This coefficient is connected with the coefficient of parallel relative diffusion of the divergent part 
of the velocity field by Obukhov's relation 

z 

P(z) = Pil(Z) + d -  l iPil(Y)dy 
Z 

0 

(1.16) 

Thus, from relation (1.14) it can be seen that the greater the total energy of the divergent part of 
velocity field the stronger the localization, and the greater the parallel coefficients of relative diffusion 
of the divergent and vortical parts, the weaker the localization. 

We will investigate the form nst(Z ) by writing expression (1.14) as 

[-i  dP(y) ] nst(Z ) = Nexp P- + Pll(Y) + EII(Y)j' N = nst(0 ) (1.17) 

Suppose lv is the internal scale of turbulence of the field v(x, t). Ifz ~ l. the following asymptotic forms 
hold 

1 z d + 2 n  2 (1.18) Ell(Z) "='-- Bez 2, PII(Z) = ~Bpz , P(Z) ~ -'-'~'tJ pZ 

Here we have used expansions (1.13) and relations (1.12) and (1.16). Substituting expressions (1.18) 
into equality (1.17) we obtain 

where 

I 2 nst(Z ) = N 2 In 
l n + (3 T+ d -  1)z 2 

(1.19) 

l] = 61a Bp (d + 2)~/ (1.20) 
x=3v+d_ 1 
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We will investigate the effect of competition between the divergent and vortical components of the 
velocity field on the steady density (1.14). To do this we will introduce the following dimensionless 
functions and dimensionless parameters 

Ell(z) P(z), 
ell(Z) = b e  , p(z) = 

and rewrite expression (1.14) as follows: 

ell(z) 8 = ~p g 
Pll(z) = -Ue' v = 

[ ~ dp(y) 1 
5zVl + 8 p l l - ~ ;  eli(y)" j 

nst(Z) n0exp 

Hence it can be seen that when 8 ~ 1 the steady density is in fact equal to some 5-independent function 
to the power 8 

Ei ? de(y) (1.21) nst(z)=noP~(z), p(z) = exp v ~ )  

In particular, the maximum steady density around the tagged particle is equal to 

N --~ n0Pa(0) 

We will estimate the quantity 9(0) assuming e II (z) ---p(z). As a result, from expression (1.21) for p(z) 
we obtain the estimate 9(0) ~ Pe = ~e/g, that is, 

N ----- n0(Pe) ~ 

Here Pe is the Peclet number of the vortical component of the impurity velocity. 
If, for example, Pe - 101° and 6 - 10 -1, then N - 10n0, that is, for these parameters of the turbulence 

the density inside the cluster is only one order of magnitude greater than the mean density. 

2. A P R O B A B I L I S T I C  I N T E R P R E T A T I O N  

We recall that not only the mean density around the tagged particle, but also the distribution of the 
distances between the particles g(z, t) satisfies Eq. (1.11). The normalized solution of Eq. (1.11), i.e. 
which satisfies the equality 

fg(z; t)dz = 1 

specifies the distribution of the distances between particles. Unlike the mean density, the density 
g(z, t) ~ 0 as t ~ ~o, since the particles, finally, fall into different clusters and diffuse independently. 
Nevertheless, when the Peclet number is large, particles form quasistable pairs, which govern the 
localization. The specific features of the behaviour of such pairs of particles can be studied under the 
assumption that for any z the asymptotic forms (1.18) hold. 

We find the steady distribution of the distances between the particles by rewriting expression (1.19) 
in a somewhat different from 

C z 
gst(Y) = , Y = - (2.1) 

[1 + (3T + d -  1)y2] x In 

Here  C is a normalizing constant. If C > 0, a steady distribution exists. Physically this means that the 
"attraction" between particles in the cluster is so great that they are not dispersed. If C = 0, the particles 
may be dispersed to as large a distance as desired. 

The case C > 0 will be called superlocalization. From relation (2.1) it can be seen that its existence 
depends on the exponent Z. The latter is specified by the parameter 7, which expressed the relative 
contribution of the divergent part of the particle velocity. It can be shown that C > 0 if 2Z > d, that 
is, if 

> d ( d -  1 ) / ( 4 -  d) 
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The analysis of distribution (2.1) of the distance between particles enables one to judge the 
characteristic form of the clusters and its variation as the parameter 7 increases. We will discuss in detail 
the two-dimensional case (d = 2), which occurs for a floating impurity. Then the quantity gst(Y) in Eq. 
(2.1) is a two-dimensional distribution of the coordinates {Yl, Y2} of the dimensionless vector y, which 
joins two particles. 

Note that distribution (2.1) of the components of the vector y does not decompose into the product 
of distributions only for Yl and only for Y2. Hence, the components of the vector y are statistically 
dependent. 

We will examine some features of the dependence mentioned above. We write the unconditional 
distribution of the component Yl 

( 2 2 
gl(Y) = I gst ~y2 + y2)dy 2 

Substituting gst(Y) (2.1) into this equation and evaluating the integral we obtain 

- { 5 7 -  1 ) = ~/3-7+ i v ( x )  

gl(y) = J~6-~--~,y ; f ( z , y )  ~/~r(~_l/2)[1+(37+1)yZff (2.2) 

The statistical dependence of the components of the vector y means that the distribution of the 
component Yl is not equal to its conditional distribution &(y [Y2) obtained under the condition that y2 
has a specified value. Calculations for the case Y2 = 0 give 

47 
, Y) (2.3) gl(ylO) = J~3-~-~  

Note that the conditional distribution (2.3) is also positive when the unconditional distribution (2.2) 
vanishes identically: if the distribution gl(Y) > 0 only when 7 > 1, then gl(Y ] 0) > 0 while 7 > 1/5. The 
latter is explained by the strong anisotropy of the clusters of particles, which arises owing to the fact 
that there are preferred directions along which the particles are "attracted" more strongly than in other 
directions. 

We will demonstrate this by the simplest model. Let us take the unit vector 

m = ilcosct + i2sinct 

where il and i2 are the basis vectors of a Cartesian system of coordinates and o~ is the angle that specifies 
the orientation of the vector m. We will construct the conditional distribution g(y [ a) of the components 
of the vectory y under the condition that the predominant direction of localization is perpendicular to 
the vector m: 

g(ylot) = •(m. y )~(y)  (2.4) 

The first factor takes into account the localization in a direction normal to the vector m, and the second 
factor accounts for the isotropic "remaining" localization in all directions. We will choose the factors 
so that the mean of conditional distribution (2.4) over the angle a gives distribution (2.1) 

±I 27¢ g(Yl~)d~ = gst(Y) (2.5) 

This is actually so if 

1 1 
¢p(m. y ) -  2' ~(Y) (2.6) 

1 + ~¢(m. y) (1 + K:y2) p 

Let us average equality (2.5) over the angle a. Noting that 

1 I dot _ 
1 + K(In. y)2 f l +  l~y 2 
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we return to steady distribution (2.1), where 

d = 2, X = 9 + 1 / 2  ( ¢ = 3 y + 1 )  

Therefore, we have the following transformation of the form of the cluster as the parameter Y changes. 
When 

p>  1 / 2 ~ Z >  1 ~ q ( >  1 

the radially symmetric factor (2.6) predominates in conditional distribution (2.4), whereas the cluster 
is approximately isotropic with characteristic size In. Such clusters will be called circles. This case 
corresponds to superlocalization and reveals the geometrical essence of this concept: under 
superlocalization conditions the cluster sizes are of the order ofln -- ~/-~p,  and the clusters themselves 
are in fact isotropic. If 

0 < p <  1 ~ 1/2 < Z <  1 ~ 1/5 < y <  1 

the clusters have a prolate form. We shall call thesefilamentsl As before, the thickness of the filaments 
is of the order of In while the length is determined by the external turbulence scale L~. When 

p < 0 ~ 0 < Z <  1/2 ~ 0 < 7 <  1/5 

the effective sizes of the clusters in all directions are of the order Lv. These clusters will be called 
protoclusters. 

Hence, when crossing the thresholds Y = 1/5 and Y = 1 there are peculiar kinds of phase transitions: 
the form of the cluster changes from protoclusters to filaments, and then to k circles. 

In the three-dimensional case we shall restrict our consideration to listing the regions of Y axis, which 
correspond to different forms of clusters, obtained from an analysis of conditional distributions. This 
is the regime of superlocalization 

3 / 2 < 9 ~ y > 6  

which corresponds to compact nearly isotropic clusters, and also the regimes 

1 < Z < 3 / 2  ~ 1 < y < 6  

1 / 2 < Z <  1 ~ 2/7 < y <  1 

Z < 1/2 ~ y <  2/7 

3. L O C A L I Z A T I O N  OF A F L O A T I N O  I M P U R I T Y  

Up to now the ratio of the divergent and vortical parts of the particle velocity was assumed to be arbitrary. 
However, for particles floating on the surface of an incompressible fluid the quantity y takes a well- 
defined value. We shall show this by discussing the simplest model of a floating impurity. Suppose the 
impurity moves along a plane inside a turbulent medium and the velocity of the impurity particles is 
equal to a projection of the statistically uniform three-dimensional turbulent velocity field onto this 
plane. We will obtain the steady density of such a "floating" impurity by noting that the two-dimensional 
potentials of the divergent and vortical parts of the impurity velocity are related to the vortical potential 
of three-dimensional motion by the equalities 

2 2 3 3 A~(z)-A2p(Z) A2(Z) A Ae(Z ) = A Ae(z), = (3.1) 
The potential Ad(z) describes the correlation properties of the d-dimensional velocity field and A d is 
the d-dimensional Laplacian. 

We will find functions that specify the steady solution 

[i ae (Y)- 1 nst(Z) = n0exp 2 2 
t_e + p , (y )  + E , (y) ]  

(3.2) 



296 I.S. Zhukova and A. I, Saichev 

From relations (1.15) and (1.3) we have 

1 3 
P2(z) = (A3-zX2)A~(z)+ ~ = ~Eil(z) (3.3) 

Here formulae (1.12) have been taken into account. Hence, according to expression (3.3), the function 
PZ(z), which is responsible for the localization of floating impurity, is equal tO half the longitudinal 
coefficient of relative diffusion E~I (z) of the three-dimensional vortical velocity field. Let us find what 
the denominator of the integrand in formula (3.2) is equal to. By relations (1.12) and (3.1) we have 

pl~(Z) + 2 3 Ell (z) = Ell (z) (3.4) 

Substituting expressions (3.3) and (3.4) into equality (3.2) and changing to dimensionless parameters, 
we find 

/ l + P e  2~3e E~(Z) 
gst(Z) = l+Pee(z) '  Pe = g , e(z) = ~ 2 ~  (3.5) 

Expression (3.5) enables us to study in detail the properties of localization of a floating impurity. We 
will do this in the model case of a Gaussian correlation function 

e(z) = 1-expt  " 21v) 

Substituting this expression into formula (3.5) and changing to the dimensionless coordinate y --- z//v, 
we obtain 

1 Pe 

gst(Y) = d l l  - 11 e-y2/2' TI 1 + Pe 

We will calculate a mean mass of the cluster defined by formulae (2.5) 

M = I ]  d2z 

Using the radial symmetry of the mean density, we will have 

M = ~ - 1 dx = 3trn(Pe) 
0 -l ie- 

( 4) 1 
= noxl2o, m(Pe) = In 4+Pee l + P e  

Note that, whereas the maximum mean density around the tagged particle increases as a square root 
of the Peclet number, the mean mass of the cluster tends to a limit that is independent of the Peclet 
number: 

m(Pe) = l n 4 - ~ e P e + O ( 1  ) (pe-->oo) 

In addition, we note that solution (3.5) corresponds to the boundary case ? = 1/5. The latter means 
that the characteristic form of clusters of floating impurity is some mixture of fibres and protoclusters. 

We wish to thank V.I. Klyatskin, T. Elperin, N. Kleorin, and I. Rogachevskii for discussing the results 
and for useful remarks. 

This research was supported financially by the Russian Foundation for Basic Research (03-02-16680), 
the Ministry of Higher Education of the Russian Federation (the "State Support of Leading Scientific 
Schools" Program NSh-838.2003.2) and the Competitive Centre of Fundamental Natural Science (EO2- 
3.5-232). 



The properties of clusters of impurity in a turbulent medium 297 

R E F E R E N C E S  

1. ELPERIN, T., KLEEORIN, N. and ROGACHEVSKII, I., Dynamics of the passive scalar in compressible turbulent flow: 
Large-scale patterns and small-scale fluctuations. Phys. Rev. E., 1995, 52, 3, 2617-2634. 

2. OTI;, S. and MANN, J., An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent 
flow. J. Fluid. Mech., 2000, 422, 207-223. 

3. ECKHARDT, B. and SCHUMACHER, J., Turbulence and passive scalar transport in a free-slip surface. Phys. Rev. E, 2001, 
64, 1, Paper 016314. 

4. BALKOVSKY, E., FALKOVICH, G. and FOUXON, A. Intermittent distribution of inertial particles in turbulent flows. 
Phys. Rev. Lett., 2001, 86, 13, 2790-2793. 

5. SAICHEV, A. I., and ZHUKOVA, I. S., The arising and evolution of the passive tracer clusters in compressible random 
media. Lecture Notes in Physics, 1998, 511,353-371. 

6. ZHUKOVA, I. S. and SAICHEV, A. I., The localization of clusters of floating particles on the surface of turbulent flow. 
Prikl. Mat. Mekh. 2004, 64, 2, 624-630. 

7. MAXEY, M. R., The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid 
Mech., 1987, 174, 441465. 

8. KRAICHNAN, R. H., Diffusion by a random velocity field. Phys. Fluids, 1970 13, 1, 22-31. 
9. GURBATOV, S. N., MALAKHOV, A. N. and SAICHEV, A. I., Nonlinear Random Waves and Turbulence in Nondispersive 

Media: Waves, Rays, Particles. Manchester University Press, Manchester, 1991. 
10. SAICHEV, A. I. and WOYCZYNSKI, W. A., Probability distributions of passive tracers in randomly moving media. In 

Stochastic Models in Geosystems (Edited by Molchanov S. A. and Woyczynski W. A.): Springer, New York, 1997, 359-399. 
11. KLAYTSKIN, V. L and SAICHEV, A. I., The statistical theory of a floating impurity in a random velocity field. Zh. Eksp. 

Teor. Fiz. 1997, 111, 4, 1297-1313. 
12. KLAYTSKIN, V. I., The Stochastic Equations from the Point of View of a Physicist. Nauka, Moscow, 2001. 
13. KLYATSKIN, V. I., The Dynamics of Stochastic Systems. Fizmatgiz, Moscow, 2002. 

Translated by E.T. 


